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1. Overview 2. LibriContinual & Evaluation Metrics

ASR models deployed in households encounter ever-changing speaker Data Source: 118 diff. speakers reading LibriVox books; transcripts generated by wav2vec2.0

distributions. Given a base A_SR model (trained on a general-purpo_se What is it? Data Splits: Train: 10m, 30m, 1h, 2h, 5h, 10h ; Val- ~3.13h ; Test: ~2.66h for every speaker
dataset), we would like to build and evaluate models that can continually Increasingly-sized train data simulates contlnual interaction

adapt as new speaker-specific data is received, in an efficient manner
(for on-device adaptation). Our contributions are two-fold:

Evaluation: Our LibriContinual ASR benchmark

Modelling: Our DisConformer model with NetAug for Base ASR training Framework
and DisentangledCL for Continual Learning

Evaluation 1- Base ASR Training: Train a base ASR model M on a general-purpose dataset (Librispeech)
2. Continual Learning: Given a continual learning algorithm A, run it on the base ASR model using

the LibriContinual train set of every speaker s to obtain 118 different ASR models M)

3. DisConformer Evaluation 1- #Params: # Avg. trainable parameters modified by the CL algorithm A (proxy for efficiency)
Metrics 2. LibriContinual WER: Median WER of model M) on its respective speaker s test set
=§°re e 3. Librispeech WER: Median WER of model M) on Librispeech; tests catastrophic forgetting
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LibriContinual reveals that current base ASR models underperform on speaker-specific data and current baseline
CL algorithms are parameter-inefficient and catastrophically forget general-purpose data; on the other hand, our
DisConformer with NetAug and DisCL is parameter-efficient and has high performance across the board!

We invite future work on continual learning in absence of labelled data, multi-speaker adaptation, and more!
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